

	EURÓPSKA ÚNIA
·?	Európsky sociálny fond Európsky fond regionálneho roz

voia

OPERAČNÝ PROGRAM ĽUDSKÉ ZDROJE

Písomný výstup pedagogického klubu

1.	Prioritná os	Vzdelávanie
2.	Špecifický cieľ	1.1.1 Zvýšiť inkluzívnosť a rovnaký prístup ku
		kvalitnému vzdelávaniu a zlepšiť výsledky a
		kompetencie detí a žiakov
3.	Prijímateľ	Stredná priemyselná škola stavebná a geodetická
		v Košiciach, Lermontovova 1, 04001 Košice -
		mestská časť Staré Mesto
4.	Názov projektu	Digitálni stavbári a geodeti
5.	Kód projektu ITMS2014+	312011AKZ2
6.	Názov pedagogického klubu	Odborná informatika
7.	Meno koordinátora pedagogického	Mgr. Renáta Palenčárová
	klubu	
8.	Školský polrok	П.
9.	Odkaz na webové sídlo zverejnenia	http://www.stavke.sk/?page_id=3908
	písomného výstupu	

10.

Úvod:

Využitie Geogebry v predmete Deskriptívna geometria

Stručná anotácia :

GeoGebra (názov je portmanteau vytvorený z dvoch slov Geo metry a Al gebra) je interaktívna aplikácia pre geometriu, algebru, štatistiku a kalkul, určená na učenie a vyučovanie matematiky a prírodných vied od základnej školy až po univerzitnú úroveň. GeoGebra je dostupná na viacerých platformách s aplikáciami pre stolné počítače (Windows, macOS a Linux), tablety (Android, iPad a Windows) aweb.

Tvorca GeoGebry Markus Hohenwarter začal s projektom v roku 2001 ako súčasť svojej diplomovej práce na Univerzite v Salzburgu. Po úspešnej kampani na Kickstarteri GeoGebra rozšírila svoju ponuku o iPad, verziu pre Android a Windows Store. V tom istom roku začlenila Giac od Bernarda Parisse do svojho CAS pohľadu. Projekt je teraz freeware (s časťami s otvoreným zdrojom) a viacjazyčný a Hohenwarter naďalej vedie jeho vývoj na univerzite v Linzi.

GeoGebra zahŕňa komerčné aj neziskové subjekty, ktoré spolupracujú z ústredia v Linzi v Rakúsku na rozširovaní softvéru a cloudových služieb dostupných pre používateľov.

V decembri 2021 GeoGebru získal konglomerát edtech Byju's za približne 100 miliónov USD.

GeoGebra je interaktívny softvérový balík pre matematiku na učenie a vyučovanie prírodných vied, techniky, inžinierstva a matematiky od základnej školy až po univerzitnú úroveň. Konštrukcie možno vytvárať pomocou bodov, vektorov, segmentov, čiar, mnohouholníkov, kužeľosečiek, nerovníc, implicitných polynómov a funkcií, pričom všetky je možné neskôr dynamicky upravovať. Prvky je možné zadávať a upravovať pomocou myši a dotykových ovládacích prvkov alebo pomocou vstupnej lišty. GeoGebra môže ukladať premenné pre čísla, vektory a body, počítať derivácie a integrály

funkcií a má celý rad príkazov ako Root alebo Extremum. Učitelia a študenti môžu GeoGebru využiť ako pomôcku pri formulovaní a dokazovaní geometrických dohadov.

Hlavné funkcie GeoGebry sú:

- Interaktívne prostredie geometrie (2D a 3D)
- Vstavaná tabuľka
- Vstavaný systém počítačovej algebry (CAS)
- Vstavané nástroje na štatistiku a výpočet
- Skriptovacie háčiky
- Veľké množstvo interaktívnych učebných a učebných zdrojov v GeoGebra Materials.

Kľúčové slová :

Geogebra, matematika, konštrukcia trojuholníka, stereometria, kocka, rez kocky

Zámer a priblíženie témy písomného výstupu:

Vytvoriť pomôcku pre žiakov strednej priemyselnej školy stavebnej v Košiciach na hodinu matematiky. Využitie je pri konštrukčných úlohách, priestorovej orientácii v priestore.

Jadro:

Cieľom je vypracovať niekoľko úloh na konštrukcie trojuholníkov a na rezy kocky pomocou troch bodov.

1. Zostrojte trojuholník ABC, ak je dané a = 9, $v_b = 4$, 5, $t_a = 2$, 5.

- Dôležité je spraviť si rozbor a pomocou rozboru spracovať konštrukciu Rozbor:

Nech ABC je hľadaný trojuholník, v ktorom $BB_1 = v_b, BC =$ $a, A\dot{A} = t_a$. Vieme zostrojiť úsečku $BB_1 \perp$ p, na ktorej ležia vrcholy A,C trojuholníka ABC. B je vrchol trojuholníka, B_1 päta výšky BB_1 . Vrchol C má od vrcholu B vzdialenosť a, leží preto na kružnici k so stredom v bode B a polomerom a a na priamke p. Ak je Astred strany BC, má vrchol A od bodu \acute{A} vzdialenosť $A\dot{A} = t_a$ leží

preto na kružnici $l = (A, t_a)$ a na priamke p. Bodmi A,B,C je trojuholník určený.

2. Zostrojte trojuholník ABC, ak je dané b = 4, 2, $v_a = 4$, $t_a = 5$. Rozbor:

Predpokladajme, že ABV hľadaný je trojuholník, kde tanti - 7 AB'=t_a, AC=b, - 4.5 $\begin{array}{l} A_{1} * (+2.25, \cdot 2.73) \\ B_{2} * (21.45, \cdot 2.73) \\ B_{1} : y + 2.73 \\ g : x - 2.26 \\ k_{1} x : (x + 2.25)' * (y + 2.72)' = 21.16 \end{array}$ AA'=v_a. Vieme zostrojiť úsečku AA' a priamku p kolmú +(-2.28, 1.87) +(-2.26, -7.33) AA′ vedenú na (x + 2.25)* + (y + 1.87)* + 24.01 + (-0.87, -2.73) -1-3.84, -2.73 bodom A', na ktorej 1: (x + 2.25)" + (y - 1.87)" = 96.25 5, = (8.56, -2.75) ležia vrcholy B a C +1/10.57 (2.73) hľadaného c: (1 + 10.5T) + (y + 2.72) + 43.88 I = (-17-18, -2.72) I = (-3.94, -2.73) I = 18.83 trojuholníka. b. - 4.8 Pretože vzdialenosť * 13.25 d (x - 6.06) + (y + 2.73) + 43.88 R, = (12.68, -2.73) bodu C od bodu A je N=14.87, -2.731 b, leží bod C na

priamke p a na kružnici k so stredom v bode A a polomerom b. Pretože AB[´]=t_a, kde B[´] je stred strany BC, leží bod B[´] na priamke p a na kružnici l so stredom v bode A a polomerom t_a. Bodmi A,B,C, kde B je taký bod priamky p, že BB[´]=BC[´], pričom bod B leží v polrovine opačnej k polrovine AB[´]C, je trojuholník určený

3. Zostrojte rovnostranný trojuholník, ak je dané r.

4. Zostrojte rovnostranný trojuholník, ak je dané ρ .

Rozbor:

Nech ABC je hľadaný trojuholník, v ktorom AB = BC = CA = a, $SP = \rho$, $k(S, \rho)$ je kružnica vpísaná trojuholníku. AK zostrojíme výšky AN, BP, CM trojuholníka ABC, sú priesečníky týchto výšok s kružnicou k dotykovými bodmi sú osami príslušných vnútorných uhlov. Preto $\ll SBM = 30^\circ, \ll SAM = 30^\circ.$ Pretože sú trojuholníky BSM a ASM

pravouhlé, $\blacktriangleleft BSM = 60^\circ, \measuredangle ASM = 60^\circ$. Teda bod A leží na ramene SA uhla $\measuredangle MSA = 60^\circ$ a bod B na ramene SB uhla $\measuredangle MSB = 60^\circ$.

V priesečníku priamok AP a BN leží vrchol C hľadaného trojuholníka. Potom sú P, N priesečníky opačných polpriamok k polpriamkam SB a SA s kružnicou *k*. Bodmi A,B,C je trojuholník určený. https://www.geogebra.org/m/kvsfra2w

5. Zostrojte trojuholník ABC, ak je dané r, α, β .

Rozbor:

Nech k(S, r) je kružnica opísaná hľadanému trojuholníku ABC, v ktorom $\measuredangle CAB = \alpha, \measuredangle ABC = \beta$. Uhol \widehat{BSC} je stredovým uhlom k obvodovému uhlu $\measuredangle CAB = \alpha$. Preto uhol $\widehat{BSC} = 2\alpha$. Polpriamky SB a SC tvoriace ramená uhla \widehat{BSC} pretnú kružnicu k vo vrcholoch B,C trojuholníka ABC. Polpriamka

https://www.geogebra.org/m/j9hbpcje

6. Zostrojte trojuholník ABC, ak je dané r, c, v_a .

Rozbor:

Nech je k(S, r) kružnica opísaná hľadanému trojuholníku ABC, v ktorom AB = c a $AP = v_a$ je výška

na stranu BC = a. Pretože bod P, ktorý je pätou výšky na stranu BC, má od bodu A vzdialenosť v_a , leží na kružnici $l(A, v_a)$. Pretože ABP je pravouhlý trojuholník s pravým uhlo pri vrchole P, leží bod P podľa Talesovej vety na kružnici m(M, MA),

kde *M* je stred strany *AB*. Priamky *BP* pretne kružnicu *k* vo vrchole *C* hľadaného trojuholníka. <u>https://www.geogebra.org/m/btthhbaw</u>

7. Zostrojte rez kocky *ABCDEFGH* rovinou *KLM*, $K \in BC$, $L \in EF$, $M \in CG$ Postup:

- Body K, M ležia v jednej rovine tvoria priamku
- Predlžíme hranu BC
- Prienik priamky KM s BC dostaneme bod N
- Body N,L ležia v jednej rovine tvoria priamku
- Priamka NL pretne kocku na hrane AB dostaneme bod O
- Zostrojíme rovnobežku s priamkou LO cez bod M
- Dostaneme bod P priesečník rovnobežky s hranou GH
- Body L, P ležia v jednej rovine tvoria priamku
- Dostaneme rez 5-uholník KMPLO

Záver:

Využiť softvér na hodinách matematiky a názorne predviesť možnosti jeho využitia na hodinách matematiky. Namiesto rysovania do zošitov bude sa využívať technické vybavenie školy a žiaci dostanú väčšiu prax pri rysovaní v softvéri.

11. Vypracoval (meno, priezvisko)	Mgr. Renáta Palenčárová
12. Dátum	26.06.2022
13. Podpis	
14. Schválil (meno, priezvisko)	
15. Dátum	
16. Podpis	